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We explain a method for constructing the representations of matrix rings specitied by sets of 
equations for generating elements. An illustration is provided by its application to the 
resolution of the problem of finding generalized gamma-matrices, i.e., the matrix coefficients in 
Lorentz invartant wave equations. A computer program, which carries out such constructions, 
has been written. ( 19X7 Academx Pres. Inc 

I INTR~~xJCTI~N 

We present a constructive method for solving sets of polynomial equations in 
noncommuting variables. As far as we know, no such genera1 method existed 
before. ’ 

This method is a generalized version of one which was initially developed to solve 
a particular algebraic problem: that of constructing generalized Dirac f-algebras. 
The method has been described before in this particular context, and a first 
problem has been solved completely through this procedure in reference [ 11. In this 
first application, it appeared clearly that this algorithm requires the keeping track 
of a relatively large number of vectors and their properties with respect to a 
relatively large number of matrices. Thus the use of a computer to help store and 
retrieve the data was soon considered with interest. 

Because of the symbolic nature of the data and the manipulations involved, LISP 
was used. Initially, an interactive program was written to assist in the carrying out 
of the solution. However, the whole method of solution is such a constructive 
procedure that can be completely carried out by the computer. Indeed, a modified 
version of our program constructs automatically the representations of finite 
groups, starting from a presentation (i.e., a set of equations for the generators of the 
group); this work will be described elsewhere. 

’ None of the main computer algebra system, which were demonstrated at the recent (July 86) Sigsam 
conference in Waterloo, is able to solve such equations for want of an algorithm. 
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The method, as presented in Section 2, is quite general: it can be used to solve 
any problem consisting of finding representations for matrices satisfying a given set 
of equations. In the following Section 3, we show how it can be used, in particular, 
to deal with the construction of any generalized r-algebra. A problem of this type. 
which was solved by other means before [3], has then been selected as an example; 
we list the eleven matrix equations to be solved in this case. In Section 4, the 
evolution of the construction of the solution, as produced by the computer, is 
described. A brief discussion follows in the last section. 

2. THE METHOD 

Let us be given a set of algebraic equations (SEQS), to be satisfied by some 
matrices. We want to construct all possible representations of matrices which will 
satisfy these equations. 

Let V stand for any vector in a representation space S for the matrices. While 
such a representation is being constructed, we shall let SN denote the set of known 
vectors, among those of S, which until otherwise established are to be considered as 
linearly independent. Thus at the beginning, SN may consist only of V. 

Clearly, an equation between matrices holds if and only if an identity is obtained 
whenever each side of it is applied to any one vector of the representation space 5’. 
Let us then apply in turn each equation of SEQS on the vector V. In doing so, it 
will happen that the result of applying some matrix M on V is unknown. Since, 
however, it is certain that the resulting vector is in S, we represent it by the name 
MC’, and add this name to the set SN. Thus, vector names are created as the need 
for the existence of the vectors which they represent is ascertained. A vector name 
as MQRV will clearly indicate that this vector was generated from V, through the 
successive application of the matrices represented by the letters R, Q, and M. 

The data pertaining to the effect of the matrices on the vectors is stored in 
relations of the type: “the matrix M on the vector V = some sum of vectors.” Such 
an expression will be considered trivial if it is of the particular form “M on 
I;= ML’.” 

The application of any one equations on V will either result in an identity or in a 
linear relation between some vectors. The first case will occur when enough is 
already known about the vector V that no additional property is implied by this 
particular equation. In the second case, one vector can be expressed as a linear 
combination of the others and thus, consequently, the name of this vector should be 
removed from SN. The rule governing the choice of which vector this will be is 
derived from an order relation between vectors which is described below. 

We shall say that Vl > V2 if either the name of VI has more letters than that of 
C’2, or if they have the same number of letters, when the name of Vl comes after 
that of C’2 with respect to alphabetical ordering. (We note that for our purposes the 
choice of the order relation for vector names of equal lengths is completely 
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arbitrary. Any other one will do; in fact, in that case an order relation is not 
necessary.) 

Thus, in a linear relation, the vector to be expressed in terms of the other ones 
shall always be the largest one of those involved in this equation. This is a crucial 
part of the construction method: larger vectors are always eliminated in favor of 
smaller ones. This ensures that the tree structure of the set SN always remains 
connected. 

Whenever an expression is found for a vector named W, this vector must be 
replaced by the corresponding expression everywhere in the data accumulated until 
then. Furthermore, all vectors with names ending with the suffixe W are affected. 
Indeed, if for example, it is found that W= A + B, then a vector named CD W 
should be substituted for everywhere by the vector resulting from the application of 
C and D on A + B. We remark that in doing so there can appear some new vector 
equations. This will be the case whenever there is, in the data, a nontrivial relation 
of the form “a matrix M on a vector generated from W = some sum of vectors.” 
Such equations of course are dealt with as all other equations. 

Once all equations of SEQS have been applied on V, the set SN will in general 
contain other vectors than V. Since the equations should be true when applied on 
these vectors also, one should repeat with the next smallest vector of SN what has 
just been done with V, and so on. The construction is finished when no more new 
vectors are produced in this process, and when all equations have been applied on 
all vectors of SN. 

Those vectors remaining in SN at the end of the construction are vectors which 
on one hand had to be generated to ensure the satisfaction of the equations by 
smaller vectors, and on the other hand, were never required to be linearly depen- 
dent for these equations to hold. Thus the vectors of SN form a basis for a 
representation of the matrices. This representation constitutes furthermore a general 
solution to the problem in the sense that all the possible irreducible representations 
containing the generating vector V are either exactly the representation constructed 
or are particular cases of it (i.e., representations obtained by postulating, in an ad 
hoc fashion, one or more additional linear relations between the vectors of SN). 
The following treatment of an example will help illustrate the above discussion. 

3. EXAMPLE OF APPLICATION 

3.1. General Problem 

The description of the motion of high-energy particles in Quantum Mechanics is 
usually done with the help of partial differential equations which are covariant 
under the Poincare group. The mathematical requirements for wave equations to 
agree with the Special Theory of Relativity were formulated very early in the 
development of Quantum Mechanics. (An excellent survey on this and the follow- 
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ing matters has been presented by Wightman in [3]). Here is a brief description of 
these requirements. 

It is postulated that free particles should display space-time translational 
invariance, and since all differential equations can be written as first order systems, 
all these wave equations can be written as the constant coefficients system: 

( - ir;, 2” + m) l)(x) = 0. (3.1) 

The variables X” and x’, i = 1, 2, 3, are, respectively, the time and space variables 
and P’= 8/&P. The constant metric tensor gP’” is diagonal with diag( gJIB) = 
(I, - I, - 1, - 1). Ic/ has N components, r,, and m are matrices of constants. The fact 
that the wave function $ may have more than one component comes from the 
necessity to describe the spin which, with the mass, constitute the characteristic 
physical attributes of elementary particles. 

The so called “standard equations” are those for which the latter physical con- 
cepts are incorporated as follows. (See, e.g., [4] or Chap. II of [3].) 

(i) The free particle theory is required to be invariant for the orthochronous 
Lorentz group LT. Thus, under a Lorentz transformation A, as the coordinates 
become x’= Ax. the wave function + becomes $‘(x’) = S(n) $(,u), with n + S(A), a 
representation of SL(2, C) (SL(2, C), the covering group of the Lorentz group is 
considered because half integral values of the spin are allowed). Covariance of 
Eq. (3.1) is then ensured by requiring f,, and m to transform respectively as a vec- 
tor and a scalar, i.e., 

S(A) T,,S(A) ’ = n/L;r,., 

S(A)mS(A) ~‘=m. 
(3.2) 

(ii) A free particle should have a unique mass. Thus, the matrix m can be 
taken simply as the positive real number n? times the identity matrix. Furthermore, 
if p is the 4-momentum of a plane wave solution $(x) = exp( -ipx) g(p), the 
minimal equation for (I-. p) will be [S], 

(I-.p)” ‘[(r.p)2-/72]=0 (3.3) 

with n E N, n > 2. This ensures that G(p) has support only on the hyperboloid 
p’=m’ 

(iii) A free particle should have a single spin. The solution &( JJ) 
corresponding to a plane wave of momentum pi= 0, p” = m, transforms under a 
representation of S&‘(2). There is a single spin when this representation is 
irreducible; the spin being defined as the label s = 0, 4, l,... of this representation. 

(iv) Quantum Mechanics requires that there exist a scalar product 

(cp? ‘b) = j d~,,J’ with g a time-like surface 
D 
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and .I” = (p’qP$ a conserved vector current. It should be nonnegative, in the sense 
($, II/) > 0 for all I/I which is a superposition of positive energy (i.e., p” > 0) plane 
waves. The Hermitianizing matrix v] is such that qt = q. (VT,>)+ = (~f,~), 
S(A)’ q,S(A) = q. Its existence is linked with parity invariance; it requires the 
representation of SL(2, C) to be self-conjugate. 

It is known (see, e.g., Bhabha’s Theorem 4 in reference 141) that for such 
equations the representation will in fact be of the form 

.JR=:‘R(n,,nz,)-t.X(n,,m,)+ “‘, 

with ;/R(n, m) irreducible representation of Lf; n and m such that n 3 m 3 0, being 
integers or half-odd integers depending on whether the physical spin is integer or 
half-odd integer. The existence of a matrix R, with the properties of a representative 
of space-time inversion can then be deduced from the form of the representation .#. 

The problem of constructing wave equations with the properties described above 
can be stated algebraically as follows. Find 13 matrices corresponding to the 
generators of the infinitesimal Lorentz transformations: J, N; and the discrete sym- 
metries: parity P and space-time inversion R; and four I--matrices with a Her- 
mitianizing matrix ‘1, these matrices being defined by the following equations. The 
commutations relations for J and N, 

[Ji, J,l = &,, J, ; [N,, N,] = -ic,ik J,; [ Ji, N,] = ic,, N, (3.4) 

the commutation relations implied by Eq. (3.2) 

IJ,, ToI = 0; [N,, f,] = if,: IJ,, f-,1 = i~,,k rk> (3.5) 

[N,, f,] = k&f,,. (3.6) 

The parity representative P satifies 

CP, J,l = 0; ( P, N, ) = 0; cp, f,,l = 0 (3.7) 

with P’ = F with c: = + 1 for bosons, i.e., particles with integer spins and E = - 1 for 
fermions, i.e., half-odd integer spins. {A, B} denotes the anticommutator of A and 
B. The space-time inversion matrix R has the properties: 

[R, J;] = 0; [R, N,l = 0; [R I;,) =O; R’=l, (3.8) 

[R, P] = 0 for bosons and (RI P} = 0 for fermions. 

The matrix q is such that q, qJ,. qN,, yf,( are Hermitian with (VP)’ = c(qP) and 
(qR)+ = c(qR), with E as above. Equation (3.3) gives rise to the Harish-Chandra 
conditions [ 51: 

c Cf,, I‘, - s,,rl I‘,, I’,. = 0 (3.9) 
,‘,{L”,,‘... ., , 
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in which the last factor has (n- 2) terms, and the summation runs over all per- 
mutations p of the indices. The number “n” is called the Harish-Chandra number of 
the equation. (It is well known [6] that n must be larger than 2 when the spin is 
larger than &.) 

The positivity condition on the scalar product implies 

v+rg-;;(f(,+ l)t;>,O for all z’ in CN. (3.10) 

The unicity of the physical spin s implies that the plane wave solutions with p0 = m 
and p, = 0, have only (2s -f 1) nonzero components and the angular momentum J’ 
has value .F(.s + I ) on such solutions. This implies 

[J2 - s(s + 1 )] I’;(T,, + 1 ) = 0. (3.11) 

3.2. Motivation and Partial Solution 

It is a well-known result for anyone who has encountered such relativistic wave 
equations that for spins larger than one, all the presently known equations are 
unstable when minimally coupled to an external magnetic field, and become stable 
only when a gravitational field is added [7]. It is worthwhile then to try and lind 
out whether all possible equations manifest this property. If this were the case, one 
could very well deduce that the principles of Special Relativity and Quantum 
Mechanics imply either the nonexistence of truly elementary particles of spins larger 
than one or that certain interactions are not possible in the absence of other ones. 
This theoretical aspect, together with the fact that there exist in nature particles of 
spin 4, and possibly some with still higher spins which need to be described, are the 
main reasons to try and construct such wave equations. 

Some methods have been proposed (see, e.g., the references given in Sect. 2 of 
Chap. 11 of [3]) to find all possible Ps, when given a representation of the Lorentz 
group. However, the method which has proven most efficient in constructing such 
equations is that described in references [S] and [9]. The latter solves the problem 
in the form: given the two free parameters physical spin s and Harish-Chandra 
degree n, find all possible r-algebras. It uses a representation in which the spin 
matrix J* is diagonal, and the discrete symmetries P and R are readily incor- 
porated. For example, in the case of fermions, in this representation, 

in which s, correspond to an irreducible representation of SU(2) for the physical 
spin s, and lk = Ik x $ with sf corresponding to an irreducible representation of 
SU(2) with label sk; this being an “auxiliary spin.” It can be that the tth one would 
have the same value as the physical spin; the index 0 or “t” will be used to charac- 

58 l/69/2- I I 
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terize that one, and the indices (t + 1) and (t - 1) will also sometimes be more 
simply replaced by + or -. The matrices for the discrete symmetries are 

P== fi 

0 1 
1 0 

0 1 

1 0 

with 0= 

the I-, being obtained as i[f,, N,], according to one of the Eqs. (3.5). 2 is an 
arbitrary real parameter; the column vector c(~ = coln(0, O,..., CI x (Q)+, CY” x sx, 
CC+ x Sz, O,..., 0) and vk is a tridiagonal matrix, the jth row of which is 

(0 )...) O,A”~“x(6~)+,v’x.s~,B”+‘)x6~,O )...) 0) 

with 6;. standard intertwining matrices for the generators of SU(2) such that 

.r/6~-&s!‘+“=i& rkl s:. 

With this decomposition of the matrices, the problem is reduced to that of con- 
structing matrices acting in the auxiliary spins vector subspace. Let then S= 
S’ + S* + . . + Sy denote this space. One then has to find matrices 8’, n’, vi, acting 
within S’ and matrices A j and Bi mapping, respectively, from ,S”‘- ” to Sj and from 
S’+ ‘) to S’, together with three vectors c(-, CC’, CI +, respectively, in the subspaces 
S- , S”, and S+. These unknowns must satisfy a set of algebraic relations derived 
from the above Eqs. (3.4)-(3.11). These relations are listed in [9] for the general 
case, and in the next section for an example of a particular family of equations. 

As a final remark concerning the general problem, the following two cricial 
properties of the vectors a -, c1’, CI + should be mentioned. First, the three of them 
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cannot all be null. Otherwise the T’s would be in block diagonal form, and thus 
reducible, while one needs be concerned only with irreducible algebras. Second, all 
vectors in the representation space must be generated from one of these three vec- 
tors, through the action of polynomials of the matrices v, n, etc., mentioned above. 
(One can easily prove that such vectors always form an invariant space for the 
f-algebra.) Thus the representation space S will have the structure of a tree of 
vectors, stemming from a , x0, and c1+, and can then be constructed as described in 
Section 2. 

3.3. Purticular Case 

We list below the equations to be solved in the construction of all spin $ 
equations involving auxiliary spins t and 2, with arbitrary multiplicities. This 
problem will be solved afterwards as an example of application of our method of 
solution of polynomial equations in noncommuting variables. We note that it has 
been solved previously by somewhat different methods [2]. 

There are two subspaces to be constructed: S for auxiliary spins t, and So for 
auxiliary spins 4. The matrices to be constructed are v , n-, C, v”, no, 8’, A and 
B”; these will be hereafter represented, respectively, by the letters E, G. J, F, H, K, 
A, B. The vectors (Y of S and ~1’ of So, will be represented respectively by V and 
IV. We note that there is, in this example, no vector a+ since there is no auxiliary 
spin $ sector to the vector space. 

There appear in the equations to be solved certain constants, defined as follows 

C =j(cc-)+e-a-, d- =$(a -)+(j -n-~g-, 

(‘0 = ((p)+@y, do = ( ct”)+eonoao. 

We shall use for them the notation: 

cv= &, CGV= ad-, cw= co, CHW=dO. (3.12) 

The reason behind this choice will become apparent below. It is furthermore given 
that these constants are related as 

L2 = 1 - $CV- cw, (3.13) 

CHW=+2L2-CW, (3.14) 

CGV=t-CV (3.15) 

in which L stands for a real constant /I, an unknown parameter at this point. 
There are four “projectors” involved in the equations; they are the particular 

matrices 

Mm =ccP(a-)+V, M”=cro(ao)t80, crO(crP)+& and ccP(crO)tOO. 

They will be respectively denoted by M, N, P, and Q. When these matrices are 
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applied on a vector, they always produce a vector parallel to N or 2”. Thus, their 
action can be represented as: 

M on VECT = (CVECT) V with CVECT = (c( )‘(I VECT, 

N on VECT = (CVECT) W with CVECT = (~“)‘0~’ VECT, 

P on VECT = (CVECT) W with CVECT as in Eq. (3.16) 

Q on VECT = (CVECT) V with CVECT as in Eq. (3.17). 

There are five equations between vectors given in the data; they are 

EV=(SL)V+SBW 

EGV= -(4L)V-(3L)GV-3BW-3GBW-BHW, 

AGV= -$AV-$HAV 

FW= -(L) W-;AV 

FHW= -(L) W+$AV+$HAV. 

There are eleven matrix equations: 

G’=O, 

E’-1-&BA-‘hM=() 9 ‘1 

AE-5FA-5P=O. 

4BHA+3BAG+3GBA+4M+3MG-t 3GM+$EGE-;G=O, 

P+AGEtFHA+$AEG$jHAE=O, 

H’=O, 

F”-l+$B+N=O, 

EB - 5BF- 5Q = 0, 

9FHF-4ABH-4HAB+7H+9N=O, 

2AGB+ABH+HAB-H=O, 

Q + EGB -t BHF t ~GEB t {EBH = 0. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21 ) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31 ) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

We note that among these equations, two: Eqs. (3.32) and (3.35) are the hermitian 
conjugate of two others: Equations (3.27) and (3.29) since the matrices A and B are 
in fact related as 

JB= A+K. (3.36) 

We recall that the matrices J and K are square, hermitian, and have inverses. 
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4. THE SOLUTION 

One of the interesting features of the chosen example is that the representation 
space S is constituted of two subspaces S and S”, and that there are two sets of 
equations: some of which hold on S (Eqs. (3.25) to (3.29)) and some on So 
(Eqs. (3.30) to (3.35)). There are also two possibly linearly independent generating 
vectors: VE S and WE S”, and it is known that one of them has to be non null. 

Another interesting feature of this problem is that there are some vector 
equations given initially on top of the matrix equations. These equations should of 
course be treated as if they had been obtained from the application of an equation 
on a vector. Thus, for example, Eq. (3.20) is taken to mean that vectors named BW 
and EV must exist in S, while the largest vector: EV, is a linear combination of the 
smaller vectors V and BW. This equation also expresses the result of the action of 
matrix E on vector V. According to the vector equations given, the set of possibly 
linearly independent vectors is initially: 

with 

SN= (SNl, SN2) 

SNI = (V, SW, GV, GBW) 

SN2 = ( W, A V, H W, HA V). 

(4.1) 

SNI contains the vectors of S and SN2 those of S”. 
We now let the construction of the solution proceed, as described in Section 2. It 

begins with the successive application of Eqs. (3.25)-(3.29) on the generating vector 
V. When this will have been done, because in the present case there are many (i.e., 
two) subspaces to be constructed simultaneously, the smallest vector (i.e., W) in the 
next subspace shall be subjected to the Eqs. (3.30)-(3.35). Then all equations having 
been used once, one should come back to the first subspace and apply all 
Eqs. (3.25)- (3.29) on the next smallest vector, etc. Here are the successive results 
obtained through the use of this algorithm. 

When Eq. (3.25) is applied on V, there results G on GV= 0, and no new vector is 
added to SNI. When Eq. (3.26) is applied on V, there results the relation EBW= E 
on BW=(t-5L’+$$‘V)V-(5L) BW+sBAV, and a new vector name: BAV is 
added to SNl. Similarly, Eq. (3.27) leads to 

FAV= -(CL’) W+ (L) AV+ ABW 

and A B W is added to SN2. Equation (3.28) yields an expression for CBA V and the 
addition of the new vector names BA V, BHW, BHA V, and EGB W to SNI. 
Equation (3.29) yields an expression for HAB W and the addition of ABHW, 
AGB W, and FHA V to SN2. 

Equations (3.30)- (3.35) are then applied on W. Equation (3.30) yields simply 
HH W= 0 and Eq. (3.31 ) an identity. Equation (3.32), however, yields 
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BA V= (1 - CV) V. Thus BA V must be substituted for in all previous vector 
equations. This involves on one hand a direct substitution in the expression for 
EBW, and on the other hand the consideration of a “new” vector equation express- 
ing the content of the equation obtained above for GBAV. In the latter equation 
GBAV is replaced by (1 - CL’) GV and the relation yields now an expression for 
EGBW, the largest vector it now contains. The remaining equations will yield in 
turn expressions for FHA V, AGBW, EBH W. Thus, when all equations have been 
applied on W, 

SNI = (V, SW, GV, BHW, GBW, BHAV), 

SN2= (W, AV, NW, HAP’, ABW, ABHW). 

The next vector to be treated is B W of SNl. The equations which are not vector 
identities, together with the incorporation of the new results in the accumulated 
data will yield here expressions for: BAB W, FAB W, BABH W, FABH W. Only one 
new vector has been added to SN in this process: ABHAV is added to SNl. 

The vector then considered is A V in SN2. The application of all equations on A V 
yields an expression for A BHA V and EBHA V, as well as an equation between two 
constants: CBW= CA V. The other equations are identities. Note that the only 
change in SN is the removal of A BHA V. The application of the equations on G V in 
SNl give an expression for GBHA V and HABH W. GBH W and EGBH W are added 
to SNl and AGBHW to SN2. 

When the vector H W of SN2 is next treated, an expression for AGBHW is 
obtained and then Eq. (3.34) leads to the equation (L) A V + (3/4 - CV) W = 0. Two 
branches in the solution must be considered at this point. The rules given in Sec- 
tion 2 require that A V be expressed in terms of W, but the coefficient L may be null. 
Thus a copy of the environment must be saved to allow to consider later the case 
L = 0, after the case L # 0 has been completely treated. When L # 0, A V = K( W) 
with K = (CV - 3/4)/L follows; the substitution of this result in the accumulated 
data will lead to the situation where the result of the action of all the matrices on 
each vector of SNl and SN2 is known. There just remains to verify that identities 
always follow when the matrix equations are applied on the vectors of SN which 
have not already been treated. When this has been done, a solution is known to 
have been obtained. In the present case, the solution obtained is: 

SNl = (V, GV, BHU’, GBHw); SN2 = ( W, H W). 

The action of the matrices E, G, A on SNl is described as: 

EV= $I’, with c= _+l, 

EGV=(-$GV)V-EGV-BHW, 

EBHW-$&BHw, 

EGBHW=+l -CV)‘V-$(l -CV)BHW-EGBHW, 



SOLUTION OF MATRIX EQUATIONS 431 

GV=(l)GV, 

GGV=O, 

GBHW=(l)GBHW, 

GGBHW=O, 

AV=+EW, 

AGV= +W+HW, 

ABHW=(l-CV)W+HW, 

AGBHW=$(CV- 1) HW. 

The action of F, H, and B on SN2 is 

FW= f~( 1 - 4CV) W, 

FHW=$(l -CV)W+feHW, 

HW=(l) HW, 

HHW=O, 

BW=$(l -CV)V, 

BHW=(l) BHW. 

TheconstantsareL=s($CV-l),CW-$CV(l-CV),andCHW= -$‘(CV-l)‘, 
etc. These can be seen to give the matrices J and K. The only arbitrary parameter 
remaining is CV, so the solution obtained corresponds to a one parameter family of 
representations. 

Since no other requirement of linear dependence comes from the matrix 
equations, the above set of vector equations, in which the vectors of SN are con- 
sidered linearly independent, describe a representation of the matrices. 

We note that when the case L = 0 is examined, two possibilities arise: one of 
them leads to a solution of the same form as the one described above in which L 
would have the particular value 0. The other possibility is for the vector W to be 
null. This gives rise to a different r-algebra which is well known as the Fierz-Pauli 
or Rarita-Schwinger spin $ algebra [IO]. 

5. DISCUSSION 

We have described an algorithm for constructing all representations of matrices 
satisfying a given set of algebraic equations. According to this method, the represen- 
tation space is built up as a connected tree, stemming from generating vectors in 
such a way that the properties of all the matrices are obtained in the process, while 
the satisfaction of the given algebraic matrix equations is guaranteed. 
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The representations so constructed constitute a general solution to the problem 
in the sense that all possible irreducible representations are either exactly the 
representations produced or a particular case of these, obtained by postulating 
additional relations between the vectors, or the matrices. This comes from the fact 
that, during the construction, vectors are added only when the need for their 
existence is ascertained; and linear relations between them are established only as 
necessary conditions for one of the matrix equations to hold true. 

To illustrate the application of this method, we have shown in Sections 3 and 4, 
how it can be used to find representations of generalized Dirac r-algebras. The 
solution of one particular such problem has been presented so as to show the steps 
through which the computer program actually goes through. This allows one to see 
how the construction evolves to reach the solution. 

This example proves to be well suited to demonstrate the possibilities of the 
method. It shows how it can be adapted to deal with having a multisubspaces struc- 
ture of the vector space, with some matrices mapping in the same subspace and 
some in other subspaces. This example also illustrates how some supplementary 
vector relations, as Eqs. (3.20) -(3.24), not necessarily implied by the set of matrix 
equations can be very naturally incorporated in the data. Finally, it shows how to 
deal, at least up to a certain point, with an equation as Eq. (3.36) which is not 
algebraic, i.e., which does not involve only matrix polynomials. As was remarked 
after Eq. (3.36) what has been done in this case is simply to add the hermitian con- 
jugate of all equations which were not self-hermitian. Although this proved suf- 
ficient here, it will not be so in general; and one will have to find a way to translate 
the content of such “nonalgebraic” equations in purely algebraic properties of the 
matrices. 

As mentioned earlier a program already exists which automatically goes 
through all the steps of the construction, except for the simplification of the sym- 
bolic constants in the coefficients of the vectors (many of which occur in the above 
examples). The program was initially designed as an interactive one partly to allow 
the user to do this kind of simplification by hand (although all numerical coef- 
ficients were automatically dealt with). We did not find it urgent at this point to 
write a function which would deal with this aspect of the calculations because there 
exist already excellent programs to do that. One other reason for writing an interac- 
tive program was to have the possibility of asking any question about the data so 
as to follow better the evolution of the solution. 

The same program has then been applied to the finding of representations of 
finite groups, given a presentation. In this case, it was easy to automatized all steps 
of the construction and a specialized version of the program has been written 
expressly to produce the regular representation of groups. Work on this subject will 
be reported elsewhere. 

A completely automatic version of the program will also be written shortly for 
the construction of representations of Lie algebras and of generalized Dirac 
f-algebras, starting only from the set of matrix equations. 
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